
Journal of Engineering Physics and Thermophysics, Vol. 73, No. 5, 2000 

M O D E L I N G  O F  S U F F O S I O N  O F  W A T E R - B E A R I N G  S T R A T A  

A. I. Nik i forov  UDC 533.539 

A mathematical model of  the sweeping-out o f  solid particles by a water flow from a porous stratum is 
suggested. The porous medium is represented in the form of  two interpenetrating continua, one of  
which is connected with movable liquids and particles and the other with immovable ones. Correspond- 
ing expressions are obtained for dynamic porosi~, and permeabili~. In describing mass exchange be- 
tween the continua, use is made of an ideal model of a porous medium in the form of a bundle of  
capillaries o f  different radii. 

Flow of liquids with an admixture of solid particles is accompanied by their physicomechanical inter- 
action. The particles can be stalled by a liquid from the walls of porous channels or, vice versa, settle on the 
walls; they are capable of  sticking in the contractions of  the pores, blocking a particle-containing liquid in the 
pore. The classical approach to modeling of this kind of phenomenon is based on the use of macroscopic con- 
servation laws and kinetic relations for phases on the whole [1, 2]. The detailed structure of the pore space is 
not taken into account and the interaction of separate particles with the liquid and a porous skeleton is not 
considered. Kinetic constants have a very specific character, and solution of any problem begins with their 

selection. Investigations are known in which, to describe the processes of suffosion and colmatage, the size 
distribution function of  the pores and model representation of a porous medium are used. In [3], the depend- 
ence of the rate of  pore-channel convergence on the dimensions of a capillary, mean velocity of  flow motion 
in it, and mean volume of particles is given. To evaluate the quantity of clogged pores, the probability ap- 
proach was used. The change in the permeability was determined by means of an ideal model of a porous 
medium in the form of  a bundle of  capillaries. 

Below, a mathematical model is suggested for the sweeping-out of solid particles by a water flow from 
a porous stratum. The porous medium is represented in the form of two interpenetrating continua, one of which 
is associated with movable  liquids and particles and the other with immovable ones [4-6]. Corresponding ex- 
pressions are obtained for dynamic porosity and permeability. In describing mass exchange between two con- 
tinua, the ideal model of  a porous medium was used in the form of a bundle of capillaries of different radii. 
The change in the mass of  particles in the settled layer in each capillary and the change of the size distribution 
function of the pores is described by means of  kinetic equations. 

Mathemat ica l  Model.  Let each point of a pure (without particles) water-bearing stratum be charac- 
terized by the following quantities: porosity m = m(x, y, z) and absolute permeability k ° = k°(x, y, z). Following 
[4], we arbitrarily split the porous medium into two interpenetrating continua characterized by the porosities 

m I and m2: 

m I + m  2 = m ,  (1) 

where ml = ml(x, y, z, t) is the dynamic porosity (the portion of the pore space occupied by the movable 
continuum) and me = m2(x, y, z, t) is the portion of the pore space occupied by the immovable liquid and 
particles. In the second continuum we will separately consider two volumes: 1) the portion of the pore space 
in clogged and butt-end pores together with the liquid and particles contained in them; 2) the portion of the 
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Fig. 1. Schematic splitting of pore space m: 1) particles; 2) water. 

pore space m3 = m3(x, y, z, t) occupied by deposited particles (Fig. 1). We neglect the inherent porosity of the 
deposited layer, i.e., we assume that the particles are densely packed and do not contain liquid in between. 

We may assume that at the initial instant of time there are no clogged capillaries, and the second con- 
tinuum is represented by an immovable water in the butt-end pores and by the particles deposited on the walls 
of the pore channels. 

The conservation equations for the first continuum will be written in the form 

a 
a t  rnl + div U = - q ,  (2) 

a 
-~t ( C l m l )  + div (CIU + D u grad C1) = -  qc- (3) 

The equation of motion will be written in the form of the Darcy law: 

U = - k grad (P),  (4) 
~t 

where k = k(x,  y,  z, t) is the permeability of the stratum with deposited particles that changes in time because 
of suffosion and clogging-up of a portion of the pore channels with particles. 

The conservation equations for the second continuum are 

a (5) 
a t  m2 = q '  

~--- (C2m2) = qc- (6) 
at 

The concentration of particles in the stratum is connected with the concentrations of particles in the 
first and second continua by the obvious relation 

C m  = Cirri I + C2m 2 . (7) 

In order to describe mass exchange between two continua and changes in the filtration-capacity char- 
acteristics of a porous medium, we will avail ourselves of the size distribution function ~p(r, t), which changes 
in time because of the sweeping-out of mass from the surface of the pore channels and because of the clog- 
ging-up of separate pore channels with particles. The following equation holds here [5]: 

O(p O(p (8) 
a-7 + Ur-ff~- + Un = 0 ,  
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Fig. 2. Pore channel and a cylindrical capillary equivalent to it. 

where ur is the rate of change in the radii of the pore channels, which is determined by the process of  suf- 
fosion; u n is the rate of change in the quantity of the pore channels of radius r determined by the process of  
clogging-up of the pore channels. 

For the initial time t = 0 it is necessary to know the size distribution of  the pore channels: 

q~ (r, 0) = {p0 (r) .  (9) 

However, only the size distribution of  the pores ~p*(r) is usually known for a pure stratum (i.e., the stratum 
without deposited particles) and the mass of deposited particles in a unit volume, and it is necessary to some- 
how redistribute the particles over separate pores, thus determining the function q~°(r). For this purpose, we will 
distribute the particles so that the following equality holds: 

o 
q~ (r) = (p* (mr) , a < l ,  (1o) 

i.e., the relative change in the radii of  the flow cross section of all the channels is the same due to the depos- 
ited particles. The magnitude of the parameter ct will be found from the condition 

m3/m = ~ r 3 ({p* - q)°) d r /~  3~p* dr . 
o 0 

(ll)  

Then the thickness of the deposited layer in a pore channel will be equal to 

h = (1 - ~ )  r .  (12) 

If the size distribution of the pore channels is assigned for the initial instant of time and the rates udt)  
and un(t) are known, then for any subsequent instant of time the size distribution function of the pore channels 
will be determined by Eq. (8). 

We note that the pores are clogged up only if the size of  the particles is not smaller than the diameters 
of  contractions (throats) d o of the pore channels. Consequently, the rate u n differs from 0 only in the region 
0 < ~ < l .  

To evaluate the rate of expansion and clogging-up of the pore channels we will model a real porous 
medium by a system of cylindrical capillaries of different radii (Fig. 2) that have contractions of the pores [5, 
6]. We will assume that (1) the particles in the liquid are distributed uniformly; (2) the ratio of the throat 
radius to the channel radius is the same for all the capillaries and is preserved in the process of tearing away 
of the particles from the walls of  the channels; (3) a pore channel is blocked completely by a particle that 
came into the throat if the characteristic dimension of the particle is not smaller than the throat diameter. 

We will consider a separate cylindrical capillary having radius r and length L. The deposited particles 
decrease the radius of  the capillary to r ° (Fig. 3). 

To evaluate the rate of clogging of the pore channels we will use assumption (2), according to which 
d g =  2r,/, and the maximum radius of  the capillary that can be clogged is equal to R = l/(2y). 
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Fig. 3. Capillary with deposited particles. 

Let u be the mean velocity of liquid m6tion in the capillary. In what follows, we will assume that all 
the particles are of the same size and have a spherical shape. We will make use of the following two experi- 
mental facts: 

1) the particles of  a spherical shape of diameter l in a capillary of  radius r can be tom away from the 
wall on attainment of a certain critical mean velocity [7, 8]: 

u* = u* (r, I) ; (13) 

2) the intensity of  suffosion is proportional to the difference between the mean velocity attained in the 
capillary and the critical velocity for each size of the particles. 

In order to evaluate the critical velocity, it is necessary to write down the conditions of the equilibrium 
of forces acting on a particle [7, 8]. From the side of the moving liquid it is the hydrodynamic force that 
strives to involve the particle into motion. The particle is held on the channel wall by attraction forces due to 
friction and roughness of  the surface. 

We assume that the hydrodynamic force coincides in magnitude with the Stokesian force [9] at a mean 
velocity of the incoming flow equal to the mean velocity of liquid in .a  ring (r°> r >  r °+  l) and the holding 
force is proportional to the weight of the particle (similar to the friction force with a certain fictitious friction 
coefficient Cf). Then 

6 r t g ~ u  1 -  1 -  = l p p g ,  

whence 

u* = c s rov~, (15) 

In accordance with the experimental data, the intensity of change in the volume of particles in the 
channels of radius r will occur according to the formula [1, 7] 

aVr (16) 
~t - 8 ( u - u * )  V r. 

If N r is the number of capillaries of  radius r, then the volume of  the deposited particles (accurate to 
h 2) in these capillaries is 

Vr ~-- 2~rhLNr . (17) 

Then, from (16) it follows that 

962 



~h - 8 (u - u*) h (18 )  
bt 

and the rate of  change of the capillary radius because of suffosion is 

Ur= ~ (U -- U*) h .  ( 1 9 )  

On the other hand, if the total volume of deposited particles per unit volume of the porous medium is 
equal to m 3, then the volume of  the particles in the capillaries of  radius r will be equal to 

vr= 
N~p2rcrhL rh~p 

m 3 - rn 3 

U ~ cp2rcrhLdr ~ rhg~tr 
o 0 

(20) 

and the intensity of  setting particles into motion qc because of suffosion per unit volume of the porous medium 
will be determined according to the formula 

~ (u - u*) rhtpdr 

qr c = ~) ~ (U -- U*) ~ rhtp m3dr = ~)rn 3 0 

0 ~ rhtpdr ~ rh~odr 
o o 

(21) 

The mean velocity in a pore channel u is related to the filtration rate U by the relation 

u = I U I r2/(8k),  (22) 

which can easily be obtained by combining the Poiseuille law for a capillary with the Darcy law for a porous- 
medium element represented by a bundle of capillaries. 

In the time At the radii of  the capillaries change because of suffosion by the magnitude 

Ar = u r At, (23) 

which leads to an increase in clearance. The new clearance (and consequently porosity) is 

m I (t + At)= m I ~ {p (r + Ar) 2 d r / ~  cprZ dr (24) 

o 0 

or, neglecting the term that contains (At) 2 and taking into account (23), we obtain 

m I (, + At)= m, S ¢P (r + 2 u ~ r A t ) d r / ~  ~pr2 dr , (25) 

0 o 

o , z  

Aml = 2ml ~tPurrAtdr / ~ tpr2dr. 
o o 

i.e., the clearance will change by 

(26) 
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The quantity m 3 changes by the same magnitude. Having divided (26) by At and let At tend to zero, for m 3 we 

have 

~)m 3 
Ot "= 2ml I ~ u r r d r / I  ~ d r .  

o 0 

(27) 

Let us consider the channels with radii of throats that satisfy the clogging condition dg< 1. 
We will assume that the fraction of clogged capillaries whose radii satisfy the clogging condition is 

proportional to the number of particles that occurred in these channels with the proportionality factor ~1 

(0<15_< 1). 
In the time At, into the capillaries of radius r will enter the particles whose volume is proportional to 

the flux of liquid in these pores: 

ClUAtNr=r2Nr C ! 1131 At (28) 
nr - f~ 8kf~ " 

The quantity of the clogged capillaries is equal to 15nr. 
The change of  the size distribution function of  the pores due to the clogging in the time At can be 

calculated as 

An = -  ~ n , / N  = - ~ r q  Cl ]UI At (29) 
8k~ ' 

and the rate uq will be equal to 

u n 

An C, IUI 
= - A--t- = 15r2rl 8 k a  (30) 

Thus, the coefficients Ur and url of Eq. (8) are determined by the dependences 

u r = ~) (u - u*) h ,  
(31) 

[~r 2rlCi [U[/(8k~2) ( 2 r < l / T ) ,  (32) 

un = (2r > l / y ) .  

The change in the absolute permeability caused by the change in the structure of the pore space be- 
cause of suffosion will be evaluated by representing the permeability for the current moment k(x, y, z, t) in the 
form of the product 

k=  £.k o ' (33) 

where the coefficient k(x, y, z, t) that characterizes the relative change in the permeability of the first medium 
will be calculated using the model of parallel capillaries and the Poiseuille law: 

£'= f 4cp (r) dr / f  4q)* (r) dr . 

o 0 

(34) 

The intensity of  the transition of the liquid from the movable to the immovable state is determined by 
the volume of clogged capillaries and can be calculated from the formula 
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o r  

g eo 

q=~C, ~ f~p(r) 4dr  / f  cp(r) ~dr (35) 

o o 

R 

f / f  q = m I u n r2dr ~p (r) r-dr. (36) 

0 0 

The intensity of the transition of the particles to an immovable state because of clogging qc v is 

n (37) qc = Clq , 

and the total intensity of the transition of the particles to the immovable state is 

r (38) 
qc = qc ~ - qc " 

N O T A T I O N  

m, porosity; Du, coefficient of convective diffusion; U, filtration rate; P, pressure; /c °, absolute perme- 
ability of the stratum without particles; g, dynamic viscosity of the liquid; p, density of the particle; C, volume 
concentration of  solid particles; Cb volume concentration of particles in the first continuum; C2, volume con- 
centration of the particles in the second continuum; r, radius of the pore channel; dg, diameter of the throat of 
the pore channel; 7, constant equal to the ratio of the throat radius to the pore-channel radius; t, time; rl, frac- 
tion of the capillaries of radius r; 1, characteristic dimension of the particles; L, characteristic length of the pore 
channels; fL mean volume of one particle; N, total quantity of the capillaries in a sample with a unit cross-sec- 
tion area; Nr, number of capillaries of radius r; nr, number of particles occurring in the capillaries of radius r; 
q, intensity of liquid transition from the movable to the immovable state; g, free-fall acceleration; 8, kinematic 
constant. Subscripts: c, concentration; 0, initial value; p, particle. 
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